msgbartop
♫ Yo disfrutaría destripándote, chaval…
msgbarbottom

20 dic 20 Dispositivos zigbee del Lidl (Silvercrest) con Zigbee2MQTT

Hace algunas semanas el supermercado Lidl sacó una gama de dispositivos de control domótico bajo su marca Silvercrest. . El esquema de conexión es el habitual de estos dispositivos: constan de un gateway zigbee que permite interactuar con él desde el teléfono móvil, a través de una plataforma propietaria, y controlar los distintos dispositivos desplegados en el hogar.

Esquema de conexiones del sistema de domótica

Esquema de conexiones del sistema de domótica

Lo interesante de este sistema es que, aparte de los dispositivos normales como control de enchufes y luces, dispone de algunos añadidos no tan comunes un calefactor cerámico. Así que no podía dejar de probar si podrían funcionar en mi sistema de domótica basado en zigbee2mqtt. Y, en efecto, funcionan, aunque hay que pelearse un poco con ellos. En mi caso estoy haciendo uso de ellos en el sistema de domótica delegado que tengo montado en Forcarey. Estoy utilizando mi misma plataforma Home Assistant desplegada en Santiponce, pero tengo un receptor zigbee separado, montado con una Orange Pi Zero que tenía sin usar, ubicada en Forcarey. Este receptor separado vuelca los datos en mi servidor MQTT bajo un topic distinto, y a correr.

Dispositivos Silvercrest reconocidos como TuYa

Dispositivos Silvercrest reconocidos como TuYa

Bueno, en realidad no ha sido tan sencillo. El primer problema es que estos dispositivos, en la fecha en que escribo esto, aún no están incorporados como dispositivos propios en la lista de dispositivos reconocidos por zigbee2mqtt. No es demasiado problemático, porque al parecer Lidl está vendiendo bajo su marca dispositivos TuYa, que sí son reconocidos. Eso sí, para que los reconozca es imprescindible tener zigbee2mqtt actualizado a su última versión. Otro punto ha sido que los dispositivos dan algo de guerra al negociar la conexión a la red, incluso ya reconocidos. En mi caso, para que terminaran la fase de interview correctamente, tuve que añadir un cable extensor USB para separar el receptor de la Orange Pi Zero. Y el tercer punto complicado es que estos dispositivos son Zigbee 3.0, y para que el sistema sea estable, es necesario utilizar el firmware del receptor zigbee con capacidades de enrutado, en vez del normal.

Con todo esto en pie, los dispositivos funcionan correctamente, tanto la luz de colores regulable como los interruptores de pared, que son con los que he experimentado. El único punto ligeramente molesto en que con estos últimos el pulsador manual no genera eventos, por lo que el uso del mismo no se registra en el sistema de domótica. Pero es algo con lo que puedo vivir. :mrgreen:

VN:F [1.9.20_1166]
Rating: 10.0/10 (1 vote cast)

Etiquetas: , , , , , ,

07 nov 20 Control de apertura de puertas y ventanas con Zigbee y sensores Aqara MCCGQ11LM

Seguimos con proyectos de IoT y domótica. En este caso, y para el piso de Forcarey, estoy preparando un sistema de control de apertura de puertas y ventanas con dispositivos Zigbee. Para ello, he escogido los sensores Aqara MCCGQ11LM. Son unos dispositivos fiables, razonablemente baratos, y -lo más importante- están perfectamente soportados en Zigbee2MQTT.

Sensor de puertas y ventanas Aqara MCCGQ11LM

Sensor de puertas y ventanas Aqara MCCGQ11LM

Y es que la gracia de todo este asunto es que no voy a hacer uso del gateway propietario de Aqara/Xiaomi. Desde hace ya algún tiempo tengo experiencia haciendo uso de Zigbee2MQTT como gateway de código abierto para algunos dispositivos Zigbee que tengo instalados en Santiponce, y la idea -como no podía ser menos- era hacer uso de la misma tecnología en Forcarey. Para ello estoy diseñando un pequeño dispositivo, basado en una placa Orange Pi Zero, que actúe como gateway de los dispositivos que voy a desplegar en el nuevo piso.

Orange Pi Zero con módem USB. El otro dispositivo es un receptor Zigbee

Orange Pi Zero con módem USB. El otro dispositivo es un receptor Zigbee

Sí, el dispositivo con conectividad HSDPA que comentábamos en el artículo anterior.

En lo referente a la instalación de Zigbee2MQTT, en líneas generales basta con seguir las instrucciones de instalación que proporciona la web oficial, con una salvedad: en la versión de Armbian que manejo (Buster 20.08.1 con versión de kernel 5.8.5) a la hora de compilar Zigbee2MQTT daba algunos errores con serialport y node-gyp, que están reportados. En mi caso ninguna de las soluciones propuestas funcionaba. Lo único con lo que conseguí hacerlo funcionar fue ignorando la parte de usar el repositorio de Node.js que se indica en las instrucciones en el apartado 2 de las mismas, e instalar tanto Node.js como específicamente node-gyp desde los repositorios oficiales de Debian. De esta manera todo el proceso de instalación concluyó correctamente.

Una vez concluida la instalación, creé el servicio para iniciar automáticamente Zigbee2MQTT al inicio del sistema, asocié los dispositivos, que fueron reconocidos sin mayor inconveniente, con lo que el proceso de configuración del hardware ha quedado concluido. En cuanto al software, el sistema de notificación de actividad de los sensores, en base a recepción de eventos de los dispositivos y su volcado a un servidor MQTT, está concluido. Los eventos se muestran de la siguiente manera:

Eventos registrados en servidor MQTT

Eventos registrados en servidor MQTT

…lo que nos permite, a partir de aquí, crear el sistema de notificaciones. ¿Cómo lo voy a hacer en mi caso? Con el estupendo software Home Assistant, que constituye la base de mi sistema de domótica. Pero eso ya quedará para otro artículo.

VN:F [1.9.20_1166]
Rating: 10.0/10 (1 vote cast)

Etiquetas: , , , , , , , , , , , ,

19 sep 20 El gateway LoRa*. Hardware y software

Esta entrada es la parte 3 de 7 de la serie Gateway LoRaWAN

Seguimos haciendo progresos con mi gateway LoRaWAN. En este caso, en el ámbito del gateway en sí. El lector avispado habrá notado que he encabezado este artículo con Lora* en vez de con LoRaWAN. Y es que en este punto lo que tengo implementado es más bien un gateway LoRa que actúa de pasarela a un servidor MQTT, y no un gateway LoRaWAN propiamente dicho. ¿Cuál es la diferencia? Es sutil, pero importante. A estas alturas lo que he implementado es un gateway, sí, entre dispositivos, y terceros servidores, pero no realizo aún control de acceso, identificadores de equipos en la red, ni nada por el estilo. Así que no puedo -en realidad- considerarlo un gateway LoRaWAN completo. Pero de momento, para el propósito que manejo, basta y sobra.

20200805_094600

Ya he hablado con anterioridad del dispositivo que estoy utilizando para construir el gateway: se trata de una placa Heltec Lora 32, que proporciona capacidad de conexión LoRa, WiFi y Bluetooth, incluyendo la variante Low Energy. Con anterioridad he estado haciendo pruebas con la variante de 433 MHz, pero para este proyecto en cuestión he optado por respetar la normativa radioeléctrica europea, y desplegarlo con la variante de 868 MHz, de la que disponía de un dispositivo que hasta ahora no había hecho un gran uso (en parte porque vino con la pantalla OLED quebrada, y ésta funciona bastante mal). Otro elemento de la configuración es la antena de recepción y el adaptador eléctrico, pero estos elementos quedarán para otro artículo.

En lo referente al software, he desarrollado un software con las siguientes características:

  • La base del sistema son las librerías de Heltec que permiten implementar comunicaciones LoRa. Los aspectos principales de la configuración ha sido establecer los parámetros de conexión adecuados para comunicarse adecuadamente con los dispositivos cliente, en este caso unos Heltec CubeCell. En concreto, los siguientes aspectos son los que hay que configurar:
    LoRa.setSpreadingFactor(8);
    LoRa.setSignalBandwidth(125E3);
    LoRa.setCodingRate4(4);
    LoRa.setPreambleLength(8);
    LoRa.setSyncWord(0×12);
  • El siguiente punto de importancia es la implementación de un sistema de configuración de la conexión del cliente WiFi mediante un AP provisional: IotWebConf. Con esta librería, válida para dispositivos ESP8266 y ESP32, se puede levantar un portal web y un AP para realizar la configuración de la WiFi en el dispositivo. La idea es sencilla: cuando el dispositivo no tiene configurada una conexión WiFi, levanta un punto de acceso con un portal web de configuración, al que se puede conectar para establecer los parámetros de la WiFi (así como otro tipo de parámetros configurables, como el servidor MQTT, por ejemplo). Una vez establecidos, el sistema almacena estos parámetros en la EEPROM de la placa, reinicia, y conecta a la WiFi proporcionada. También permite introducir una nueva configuración WiFi en caso de que se mueva el dispositivo a una ubicación en la que la WiFi configurada no tenga alcance. La principal ventaja es que no hay que preconfigurar en código los parámetros de conexión, pudiendo hacerlo en tiempo de ejecución. A continuación se puede ver una captura de la interfaz web que se levanta:
  • portal-wifi
  • Otro aspecto adicional de esta librería es que permite realizar la actualización de firmware On-The-Air: la interfaz web proporciona una vía para cargar el software precompilado de Arduino en la placa, sin tener que conectar la misma a un PC mediante cable, además de incluir un sistema de seguimiento de versiones de firmware. Sumamente útil, teniendo en cuenta que el gateway va a estar ubicado, en mi caso, en lo alto del tejado.
  • Por último, he realizado algunos ajustes adicionales en optimización de la transmisión de datos entre dispositivo y gateway. La principal (en el caso de transmisión de valores numéricos) es la utilización de codificación hexadecimal, para transmitir menos bytes y optimizar el tiempo de vuelo de los datos.

En cuanto a la recepción de datos, ha sido sumamente exitosa. En el código de ejemplo utilizado en el cliente, se envía una trama compuesta de dos valores en hexadecimal, que son inyectados en un topic MQTT, junto con el valor del RSSI de la transmisión, a fin de controlar la calidad de la misma. El servidor MQTT se encuentra completamente ajeno al sistema, siendo un servidor multifunción que utilizo para diversos proyectos.

trafico-mqtt

El resultado es, hasta ahora, bastante bueno. En próximos capítulos hablaré de otros elementos del sistema.

VN:F [1.9.20_1166]
Rating: 0.0/10 (0 votes cast)

Etiquetas: , , , , , , , , ,

28 ago 20 Adaptación a IoT de un difusor de aceites esenciales TENSWALL con control remoto IR

Seguimos con las adaptaciones a IoT. Otra de las que he realizado recientemente es la integración en mi sistema de domótica basado en Home Assistant de un difusor de aceites esenciales controlado por infrarrojos. A principio de verano le regalamos uno de estos difusores a mis cuñados para su casa, pero como también nos gustó para la nuestra, nos decidimos a comprar uno. Elegimos un modelo en Amazon con iluminación y control remoto por infrarrojos, un Tenswall de 500 ml.

Difusor de aceites Tenswall de 500 ml y control por infrarrojos

Difusor de aceites Tenswall de 500 ml y control por infrarrojos

Por lo que he podido averiguar, es un modelo bastante estandarizado vendido bajo multitud de marcas y fabricantes: se basa en el uso de frecuencias ultrasónicas para producir una vaporización del agua y los aceites esenciales a ella añadidos, generando una niebla que esparce las esencias, pero sin calentar el agua colocada en el depósito. Existen otros modelos más avanzados que integran capacidad WiFi y controlable desde una aplicación en el teléfono móvil, basado -por lo que recuerdo- en un ESP8266, pero el modelo que nosotros adquirimos tan sólo cuenta con capacidad IR. En realidad, una ventaja para lo que estaba buscando. El modelo que nosotros adquirimos tiene las siguientes funciones:

  • Encendido/apagado
  • Funcionamiento en modo intermitente (varios segundos generando niebla, varios segundos sin generarla)
  • Funcionamiento en modo continuo
  • Temporizador de funcionamiento a 60, 120 o 180 minutos, o bien en continuo
  • Funcionamiento con mucha niebla o poca niebla
  • Encendido de luces led, en modo carrusel, o 16 posiciones posibles
  • Apagado de las luces led

Para realizar la adaptación a IoT, lo primero fue capturar los códigos IR enviados por el mando a distancia. Para ello utilicé un receptor IR y una librería arduino que ya en su momento empleé para leer códigos del aire acondicionado. Capturé cada uno de los códigos asociados a los comportamientos indicados más arriba. Los adjunto por si a alguien más le sirvieran, en formato raw, y su equivalencia en protocolo NEC:

  • uint16_t rawDataOnOff[67] = {9040, 4466, 600, 532, 604, 530, 596, 538, 598, 536, 598, 534, 602, 532, 594, 538, 596, 536, 598, 1642, 598, 1642, 598, 1644, 598, 1644, 596, 1646, 596, 1644, 594, 1646, 594, 1646, 594, 538, 596, 536, 598, 560, 576, 558, 566, 568, 568, 564, 572, 562, 574, 560, 576, 1640, 602, 1640, 600, 1640, 600, 1640, 600, 1640, 600, 1642, 600, 1640, 600, 1642, 600}; // NEC FF00FF
  • uint16_t rawDataIntermittent[67] = {9040, 4462, 592, 540, 594, 540, 596, 536, 598, 534, 602, 532, 592, 542, 594, 538, 598, 536, 600, 1640, 600, 1642, 600, 1642, 600, 1642, 598, 1644, 598, 1644, 596, 1646, 596, 1646, 594, 1646, 594, 540, 596, 538, 598, 536, 600, 534, 602, 532, 594, 540, 596, 538, 598, 536, 600, 1640, 600, 1640, 600, 1642, 600, 1640, 600, 1642, 600, 1640, 600, 1642, 598}; // NEC FF807F
  • uint16_t rawDataContinuous[67] = {9032, 4466, 600, 532, 602, 530, 594, 538, 596, 536, 600, 534, 602, 530, 594, 540, 596, 538, 598, 1642, 598, 1642, 598, 1642, 598, 1642, 598, 1642, 598, 1642, 598, 1642, 600, 1642, 598, 534, 600, 1640, 600, 534, 592, 540, 594, 538, 598, 534, 600, 532, 592, 540, 596, 1644, 594, 538, 598, 1642, 598, 1642, 598, 1642, 598, 1642, 598, 1644, 598, 1642, 598}; // NEC FF40BF
  • uint16_t rawDataTiming[67] = {9032, 4464, 602, 530, 594, 538, 598, 536, 600, 532, 602, 530, 596, 538, 598, 534, 600, 532, 602, 1638, 604, 1636, 594, 1646, 594, 1646, 594, 1644, 598, 1642, 598, 1642, 598, 1642, 598, 534, 600, 532, 604, 530, 596, 1644, 598, 534, 600, 534, 602, 532, 594, 540, 596, 1644, 596, 1642, 598, 1642, 598, 534, 602, 1638, 602, 1638, 602, 1638, 604, 1636, 604}; // NEC FF10EF
  • uint16_t rawDataBigSmall[67] = {9034, 4466, 600, 532, 602, 530, 594, 538, 596, 538, 598, 534, 602, 532, 594, 566, 570, 564, 570, 1642, 598, 1642, 598, 1642, 598, 1642, 598, 1642, 598, 1642, 598, 1642, 598, 1642, 598, 1642, 598, 536, 600, 532, 602, 1638, 604, 530, 594, 538, 598, 536, 600, 534, 602, 532, 594, 1646, 594, 1646, 594, 540, 596, 1644, 596, 1644, 596, 1644, 598, 1644, 596}; // NEC FF906F
  • uint16_t rawDataLight[67] = {9040, 4462, 594, 538, 596, 536, 598, 536, 600, 532, 602, 532, 604, 530, 596, 538, 596, 538, 598, 1644, 596, 1644, 598, 1644, 596, 1644, 596, 1646, 594, 1646, 594, 1648, 602, 1640, 602, 530, 594, 1648, 602, 532, 594, 1646, 594, 540, 596, 538, 598, 536, 600, 534, 600, 1640, 600, 532, 592, 1648, 602, 530, 594, 1648, 592, 1648, 592, 1648, 592, 1650, 602}; // NEC FF50AF
  • uint16_t rawDataLightOff[3] = {9042, 2220, 596}; // NEC (Repeat) FFFFFFFFFFFFFFFF

Posteriormente pasé a crear un código arduino que se suscribe a un topic MQTT específico con el que se interactúa con el difusor. La idea es crear en Home Assistant un objeto que implemente las funciones del mando a distancia, y mapear los comandos enviados desde Home Assistant a los códigos IR anteriores. En Home Assistant, basta con crear un objeto de tipo luz, que implemente las funciones anteriormente descritas:


light:
- platform: mqtt
schema: json
name: Oil Diffuser & Light
state_topic: "<topic>"
command_topic: "<topic>/set"
brightness: true
rgb: false
effect: true
effect_list: [intermittent,continuous,timing,big/small,stopLight,lightOff]

…lo que genera una entidad con el siguiente aspecto:

Entidad generada en Home Assistant

Entidad generada en Home Assistant

Posteriormente, es necesario crear en Arduino un código que sea capaz de suscribirse al topic definido en Home Assistant, y reacciones a la información JSON enviada por éste. En realidad, todos los casos posibles son bastante sencillos. El caso que más complejidad tiene es el correspondiente a la luz, ya que el mismo botón/código sirve para encender la luz LED (que siempre empieza en carrusel de colores) y para rotar entre los 16 colores disponibles. En mi caso opté por mapear el deslizador de brillo definido (sin hacer uso de la paleta cromática) para escoger entre las 16 opciones de iluminación, más el modo continuo. En mi caso, opté por lo siguiente:

  • En el caso de recibir “1″ como valor de brillo (valor mínimo): Apagar la luz LED
  • En el caso de recibir “255″ como valor de brillo (valor máximo): Encender en el primer modo, correspondiente a la rotación de colores
  • Para el resto de valores: Calcular en cuál de los 16 tramos de luz se encuentra el deslizador (dividiendo el valor por 16), enviar el código de apagado (que consiste en simular una pulsación continua del botón de control de la luz durante 2 segundos), enviar el código de luz para entrar en el modo de rotación de colores, enviar de nuevo el código para detener la rotación de colores, y posteriormente tantas veces el código de luz como el tramo en el que nos hallemos (ya que este es el funcionamiento del dispositivo).

Por último, es necesario cargar el código en un ESP8266, equipado con un emisor IR. Dado que el difusor de aceites que yo escogí dispone de abundante espacio, es bastante sencillo colocarlo. En mi caso, el difusor se alimenta con un transformador de 24v en continua, que no se puede utilizar directamente para alimentar al ESP8266. En mi caso, opté por utilizar un buck converter DC-DC de 24v a 3.3v, con lo que queda solventado el problema de la diferencia de voltaje. ¡Y listo! Con todo esto es posible controlar un difusor de aceites simple desde la domótica de la casa.

VN:F [1.9.20_1166]
Rating: 10.0/10 (2 votes cast)

Etiquetas: , , , , , , ,

25 ago 20 Adaptación a IoT de un robot de limpieza Dirt Devil e integración en Home Assistant

Estos días he estado juegueteando un poco con un viejo robot de limpieza doméstico del Lidl, un Dirt Devil. Es un robot de limpieza bastante básico, con algo ya de tiempo a sus espaldas. No dispone de ninguna capacidad de integración con sistemas de domótica, ni nada que se le parezca. Es más, ni siquiera tiene WiFi. Pero tiene algo interesante: su funcionamiento se basa en el uso de un chip etiquetado como RV285R, que controla toda una placa de circuitos integrados para realizar las funciones del robot: movimiento de los cepillos, ventilador de succión, detección de golpes, sensores de vacío para que no se caiga por escaleras… El caso es que buscando un poco por Internet, encontré un par de páginas sumamente interesantes sobre cómo reemplazar este chip por un sistema Arduino. Así que aprovechando que sigo de vacaciones, no podía menos que dedicar algo de tiempo al asunto.

De acuerdo a la información compartida por Paijmans, el chip RV285R trabaja a 5 voltios, por lo que es posible hacerlo funcionar directamente en dispositivos Arduino. Con un trabajo de ingeniería inversa, fue capaz de obtener la información de a qué se dedican los pines del chip:

rv285r-pinout

Yo he podido refinarlo un poco más, distinguiendo las funcionalidades de los pines:

  • P50: Led azul, o de encendido
  • P67: Detector de colisión (bumper)
  • P66: Zumbador interno
  • VDD: 5 voltios
  • P65: Nada
  • P64: Ventilador
  • P63: Nada (Etiquetado como Reset por el fabricante)
  • P51: Led rojo, o de indicación de batería baja
  • P52: Motor de rueda izquierda, funcionamiento hacia delante
  • P63: Motor de rueda izquierda, funcionamiento hacia atrás
  • VSS: Tierra
  • P60: Nada (aunque sospecho que es detector de depósito lleno del robot)
  • P61: Motor de rueda derecha, funcionamiento hacia delante
  • P62: Motor de rueda derecha, funcionamiento hacia atrás

Una vez identificados los elementos del chip, era hora de abrir el robot. Se puede apreciar el chip en la parte central de la placa:

IMG_20200824_103439438

Aunque en Paijmans indican que es posible puentear cada una de las patas del chip y conectarlas directamente al arduino (ya que éste tiene más fuerza en las señales que las que pasa el chip), en mi caso he optado por desoldarlo, y conectarle cables de prototipado. Aunque en un principio parecía una buena idea, al poner de nuevo las carcasas del robot, en mi caso saltaron un par de soldaduras de sus pistas, por lo que tuve que hacer trabajo extra de soldadura. Recomiendo soldar directamente al cable:

IMG_20200824_185905184

Una vez soldados los cables, el siguiente paso es el dispositivo Arduino. He optado por hacer uso de un Wemos D1 Mini Pro, de la familia de los ESP8266, ya que proporciona capacidades WiFi, y viene sin los bornes para los cables de prototipado, por lo que podía soldar directamente los cables para ahorrar espacio. Para la lógica del mismo me he basado en la creada por Conrad Vassallo (Converting a cheap Vacuum Robot into IoT) en su proyecto de domotización, ya que está preparado para integrar directamente en un sistema de domótica Home Assistant.

IMG_20200824_185913934_HDR

Algunos comentarios:

  • He tenido que hacer algunas modificaciones al trabajo de Conrad, ya que en el código que comparte faltaba la parte de conectar a la red WiFi el ESP8266. También he eliminado algunas librerías de las que no se hacía uso (EEPROM, Wire). Además he tenido que adaptar los valores de detección de batería baja (más en el siguiente punto) para que se amoldara a mi caso.
  • Conrad ha añadido al proyecto base una idea interesante: un detector de voltaje de la batería de 16v del robot. Usa para ello el pin A0 del ESP8266, que tiene capacidad para medir voltajes. Sin embargo, es necesario utilizar un conversor de voltaje para no quemar el disposito. Un simple divisor de voltaje con dos resistencias funcionará bien, y esta información estará disponible para Home Assistant.
  • Carga el código antes de soldar los pines provenientes de la placa. Una vez soldados, ya no es posible cargar código al Wemos a través del puerto microUSB, ya que el pin D4 mete ruido. En mi caso, tuve que desoldar. Para evitar este problema sería interesante añadir actualización OTA, pero me temo que eso quedará para una nueva versión.
pinout-wemos-mini-d1

Esquema de conexiones del D1 Mini Pro. Atención al uso del pin D4 para el envío de datos como puerto serie desde el Arduino IDE

Por último, queda la parte de Home Assistant. Con añadir el siguiente código a la configuración, el sistema estará preparado para interactuar con el robot:

vacuum:
- platform: mqtt
command_topic: "vacuum/command"
battery_level_topic: "vacuum/state"
battery_level_template: "{{ value_json.battery_level }}"
charging_topic: "vacuum/state"
charging_template: "{{ value_json.charging }}"
cleaning_topic: "vacuum/state"
cleaning_template: "{{ value_json.cleaning }}"
docked_topic: "vacuum/state"
docked_template: "{{ value_json.docked }}"
error_topic: "vacuum/state"
error_template: "{{ value_json.error }}"

El intercambio de información entre el robot y Home Assistant se realiza mediante MQTT. A continuación se puede ver una captura de los datos intercambiados:

mqtt-capture

¿Y el resultado? Espectacularmente bueno. Dejo un par de vídeos. El primero, con el robot aún abierto, y con una Victorinox haciendo de contrapeso, ya que si no, los sensores de vacío entran en funcionamiento:

…y el segundo, ya con las carcasas colocadas, y probando algunas funcionalidades adicionales, como la limpieza específica en un punto concreto:

Fuentes:

VN:F [1.9.20_1166]
Rating: 10.0/10 (1 vote cast)

Etiquetas: , , , , , , , , ,